

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 266 (2007) 131-138

www.elsevier.com/locate/molcata

The modification and stability of γ -Al₂O₃ based catalysts for hydrolytic decomposition of CF₄

Xiu-Feng Xu^{a,b}, Jong Yeol Jeon^a, Mi Hwa Choi^a, Hee Young Kim^a, Won Choon Choi^a, Yong-Ki Park^{a,*}

^a Division of Advanced Chemical Technology, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea ^b Institute of Applied Catalysis, Yantai University, Yantai 264005, PR China

Received 19 April 2006; received in revised form 11 October 2006; accepted 15 October 2006 Available online 25 October 2006

Abstract

Al₂O₃ of different phases were applied in the hydrolytic decomposition of CF₄ with water into CO₂ and HF at 750 °C. It was found that γ -Al₂O₃ was an active catalytic phase, but it deactivated rapidly due to the transformation into a catalytically inactive α -Al₂O₃ affected by the HF produced in the reaction. To increase catalytic stability, the γ -Al₂O₃ was modified with various types of metals such as Zn, Ni, Mg, Sr and Ba. When the γ -Al₂O₃ was modified with Zn and Ni, the catalytic stability was enhanced remarkably, which was mainly due to the formation of Zn or Ni aluminates resistant to the HF on catalyst surface during the reaction. Mg, Sr and Ba were also good structural stabilizers for γ -Al₂O₃, but the catalytic activity for the CF₄ decomposition decreased due to their neutralizing effect on acid sites of γ -Al₂O₃. The FTIR spectra of adsorbed pyridine revealed that Lewis acidity of γ -Al₂O₃ based catalysts played an important role and the efficient structure modifier can preserve the Lewis acid sites on the catalysts in the CF₄ hydrolysis process.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Hydrolytic decomposition of CF₄; γ-Al₂O₃; Structure modifiers; Catalyst stability; Lewis acidity

1. Introduction

Perfluorocompounds (PFCs), such as CF_4 , NF_3 and SF_6 have been widely used as etching and cleaning agents in semiconductor processes. The PFCs have high global warming potential (GWP) and long lifetime; for example, CF_4 has a GWP 6500 relative to that of CO_2 and a lifetime of 50,000 years [1,2]. Therefore, it is strongly required to destruct the exhausted PFCs, which are included in the Kyoto Protocol. Several technologies of PFCs abatement, such as incineration, plasma and catalytic decomposition have been suggested. Among them the plasma decomposition has ever been considered as one of the most probable candidates; however, due to the lack of plasma stability and the formation of by-products, such as NO_x , the interest in it has decreased and new abatement technologies have been searched for. Recently, the catalytic decomposition has been suggested as

1381-1169/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2006.10.026

a more practical and economical method for the abatement of PFCs.

As can be seen in Eqs. (1) and (2), the water reveals high thermodynamically negative Gibbs free energy and is effective in the PFCs decomposition:

$$CF_4 + O_2 \rightarrow CO_2 + 2F_2 \quad (\Delta G^\circ = 494 \text{ kJ/mol})$$
(1)

$$CF_4 + 2H_2O \rightarrow CO_2 + 4HF \quad (\Delta G^\circ = -150 \text{ kJ/mol}) \quad (2)$$

In the hydrolytic decomposition of PFCs, highly reactive and corrosive HF is produced together with CO₂. According to Farris et al. [3], the HF produced in the hydrolytic decomposition of C_3F_6 over Pt/Al₂O₃ led to a rapid deactivation of the catalyst due to the formation of AlF₃ through the interaction of Al₂O₃ with the produced HF. It was reported that in CF₄ hydrolytic decomposition over the AlPO₄ catalyst at 700 °C, the conversion of CF₄ was reduced from 74% at the initial stage to 52% after 95 h of time on stream [4,5].

According to our recent results [6,7], the influence of HF on γ -Al₂O₃ catalyst was strongly dependent on the reaction

^{*} Corresponding author. Tel.: +82 42 860 7672; fax: +82 42 860 7590. *E-mail address:* ykpark@krict.re.kr (Y.-K. Park).

temperature. When γ -Al₂O₃ was used as a catalyst in CF₄ hydrolytic decomposition under excess water, it can be transformed into AlF₃ or α -Al₂O₃ depending on reaction temperature. That is, when γ -Al₂O₃ was exposed to the environment of CF₄ hydrolysis below 600 °C AlF₃ phase was observed predominantly on the catalyst, but α -Al₂O₃ appeared above 600 °C. Consequently, we made a conclusion that the transformation of γ -Al₂O₃ into AlF₃ or α -Al₂O₃ affected by HF was responsible for the deactivation of γ -Al₂O₃ based catalysts. Therefore, it is very important to prepare a catalyst resistant to the produced HF without deactivation in the catalytic decomposition of PFCs.

Recently, some patents claimed that a long lifetime and high activity for PFCs catalytic decomposition could be guaranteed over modified γ -Al₂O₃ [8–15]. Previous results reported that the stability of γ -Al₂O₃ catalysts for the CF₄ decomposition could be improved remarkably by the introduction of some other metals, such as zinc and nickel as a structure modifier [16,17]. They explained that the introduced metals converted into metal aluminates during calcination, which brought increased Lewis acidity and made the catalyst more resistant to HF. However, the reason for the deactivation was not explained well.

Recently, it was found that the deactivation of γ -Al₂O₃ strongly depended on the reaction temperature and was mainly caused by the phase transformation of catalysts. At the reaction temperature lower than 680 °C, no severe phase transformation of catalysts was observed [16,17]. However, if the reaction temperature was higher than 700 °C, where 100% of CF₄ conversion was attained, the phase transformation of γ -Al₂O₃ into α -Al₂O₃ occurred severely even over Ni and Zn modified alumina catalysts.

Therefore, in the present study, we investigated phase transformation behavior of modified alumina catalyst at high reaction temperature and tried to correlate the deactivation rate with the loadings of metal modifiers. Different types of aluminum phases were formed on the γ -Al₂O₃ by calcining the γ -Al₂O₃ after modifying with different types of metal precursors such as Zn, Ni, Mg, Sr and Ba. Then the physicochemical properties of the catalysts were investigated by BET surface area measurement, XRD, SEM, and FTIR of pyridine adsorption and correlated with their catalytic activity and stability.

2. Experimental

2.1. Catalyst preparation

For hydrolytic decomposition of CF_4 , four types of alumina precursors, an alumina of mixed phases from Strem Chemicals Co., boehmite from Condea Chemical Co., amorphous Al(OH)₃ from Aldrich Chemical Co. and gibbsite from Zeotech Korea Co. were used after calcination at 700 °C in air for 10 h.

For the modification of γ -Al₂O₃, the boehmite was incipiently impregnated with Zn(NO₃)₂·6H₂O, NiSO₄·6H₂O, Mg(NO₃)₂·6H₂O, Sr(NO₃)₂ or Ba(NO₃)₂ solution for 24 h, and followed by drying at 100 °C and calcining at 700 °C for 10 h. The prepared catalysts were denoted by x% M/Al₂O₃, where M and x indicates the metal element and its atomic percentage in M/(M + Al), respectively.

2.2. Catalytic reaction

The hydrolytic decomposition of CF₄ was carried out in a continuous fixed-bed 3/4 in. inconel reactor at 750 °C under atmospheric pressure with flowing 0.7% CF₄, 34.5% H₂O and balanced He at a gas hourly space velocity (GHSV) of 2000 h⁻¹. A syringe pump was used to constantly introduce the required amount of water. The effluent gas was washed by distilled water to remove the produced HF and passed through a cold trap to remove the water, and then analyzed with a HP5890 GC equipped with a Porapak Q column (\emptyset 0.3 cm × 2 m, column temperature 40 °C) and a TCD detector.

2.3. Catalyst characterization

For the characterization of physicochemical properties of the bare and modified γ -Al₂O₃ catalysts, BET surface area measurement, SEM, XRD and FTIR of adsorbed pyridine were applied.

BET surface area measurements were performed using an automated nitrogen adsorption apparatus (ASAP2400, Micromeritics). Prior to the measurements, the samples were degassed at 300 °C for 3 h.

The crystallographic phases of catalysts were examined by a Rigaku D-max IIIB X-ray diffractometer with Ni filtered Cu K α radiation.

SEM-EDX analysis was done using a JEOL JSM-840A scanning electron microscope equipped with an energy dispersive X-ray detector.

Surface acidity of catalysts was measured with a Nicolet Avatar360 FTIR spectrometer after pyridine adsorption. A self-supported sample was prepared by pressing and then treated under vacuum at 300 °C for 3 h in an in situ IR cell. After cooling to room temperature, the pretreated samples were exposed to pyridine vapor, and then evacuated for 1 h at 100, 200, 300 and 400 °C, respectively. After the treatment, the IR spectra were obtained at ambient temperature.

3. Results and discussion

3.1. Catalytic activity of alumina of different phases

For the preparation of aluminas of different phases, four kinds of alumina precursors having the original structure of boehmite (AlOOH), an alumina with mixed phases, amorphous Al(OH)₃, gibbsite were used, respectively. Fig. 1 shows the XRD patterns of these alumina precursors as purchased and calcined at $700\,^{\circ}\text{C}$ for 10 h in air. In XRD patterns, the χ -Al₂O₃ shows characteristic peaks at 2θ value of 42.8° , 44.4° and 67.3° with relative intensities of 40, 11 and 100 (PDF no. 34-493), while γ -Al₂O₃ has peaks at 31.9°, 45.8° and 66.7° with relative intensities of 45, 80 and 100 (PDF no. 29-63), respectively. So, the χ - and γ -Al₂O₃ phases can be distinguished by the presence of XRD peaks at 42.8° and 31.9°. As shown in Fig. 1, four alumina precursors as purchased showed the XRD patterns of a χ - and γ -Al₂O₃ mixture, boehmite (AlOOH), gibbsite and amorphous Al(OH)3, respectively. However, after calcination at 700 °C in air, they were transformed into different types of alu-

Fig. 1. XRD patterns of (1) Al_2O_3 of mixed phases, (2) boehmite, (3) amorphous $Al(OH)_3$, (4) gibbsite (A) as received and (B) after calcinations at 700 °C for 10 h in air.

mina. When the boehmite was calcined the pure γ -Al₂O₃ phase was obtained, while a mixture of χ - and γ -Al₂O₃, amorphous Al₂O₃ and χ -Al₂O₃ were obtained from the Al₂O₃ of mixed phases, amorphous Al(OH)₃ and gibbsite, respectively.

As shown in Fig. 2, the decomposition of CF₄ was strongly influenced by the types of alumina phase. The γ -Al₂O₃ obtained by calcining boehmite revealed the highest activity during the initial stage; 100% conversion of CF₄ was obtained at the beginning of reaction. However, different from γ -Al₂O₃, the other three types of alumina showed quite low activity and only less than 30% CF₄ conversion was obtained. These results clearly reveal that of all the aluminas of various types, only the one with γ -phase is catalytically effective for the hydrolytic decomposition of CF₄.

To find the reasons for the high catalytic activity of γ -Al₂O₃, the physicochemical properties such as BET surface area and morphology of the four types of alumina were investigated and compared.

The surface area of Al_2O_3 with mixed phases, boehmite AlOOH, gibbsite Al(OH)₃ and amorphous Al(OH)₃ was 179.3, 330.3, 286.3 and 37.4 m² g⁻¹ as received and was changed to

Fig. 2. Hydrolytic conversion of CF4 at 750 $^\circ C$ over aluminas obtained by calcining different precursors.

139.5, 197.9, 168.3 and 51.7 m² g⁻¹ after calcination at 700 °C, respectively. Among them, the boehmite showed the highest surface area, which was maintained after calcination even though its absolute value was reduced. The Al₂O₃ of mixed phases or χ -Al₂O₃ from gibbsite also revealed relatively high surface area, which was higher than 130 m² g⁻¹ even after calcination at 700 °C. Generally, the surface area decreases after the calcination, but in the case of amorphous Al(OH)₃, its surface area increased after calcination at 700 °C. The result reveals all of the aluminas have surface area higher than 50 m² g⁻¹; however, their catalytic activity for CF₄ decomposition was quite low except for the γ -Al₂O₃ obtained from boehmite, which infers that the large difference in activity of different phases of alumina did not result from the difference in their surface area.

The morphology of these aluminas was monitored by SEM and shown in Fig. 3. The Al₂O₃ of mixed phases and γ -Al₂O₃ from boehmite have a granule size larger than 20 and 8 µm, respectively, while the χ -Al₂O₃ from gibbsite and amorphous Al₂O₃ consisted of fine granules having particle size less than 1 µm. The size of granules was in the following order: Al₂O₃ with mixed χ - and γ -phases > γ -Al₂O₃ > χ -Al₂O₃ > amorphous Al₂O₃, which has no correlation with their catalytic activity for the CF₄ decomposition.

The results of XRD, BET and SEM reveal that the decomposition conversion of CF₄ depends more strongly on the chemical properties of Al₂O₃ catalysts than the physical ones. Only the γ -Al₂O₃ was effective for the hydrolytic decomposition of CF₄, but when the γ -Al₂O₃ was exposed to the reaction conditions for 22 h, it was transformed into a dense α -Al₂O₃ [7], which led to rapid deactivation and a short lifetime of catalyst. Considering that the γ -Al₂O₃ is stable and the transformation of γ -Al₂O₃ into α -Al₂O₃ does not take place in air at 750 °C, it is inferred that the formation of α -Al₂O₃ in the CF₄ hydrolysis mainly resulted from the produced HF.

In summary, γ -Al₂O₃ is an effective phase for the CF₄ hydrolytic decomposition but it itself is not stable enough to resist the produced HF and further modification is strongly required to stabilize the catalytically active γ -phase.

Fig. 3. SEM images of (A) Al_2O_3 of mixed phases, (B) boehmite, (C) amorphous $Al(OH)_3$ and (D) gibbsite after calcinations at 700 °C for 10 h in air (magnification: $10,000 \times$).

3.2. Catalytic activity of modified γ -Al₂O₃

To improve the stability of γ -Al₂O₃, it was modified with Zn, Ni, Mg, Sr or Ba oxide and the activity of modified γ -Al₂O₃ catalysts was tested for CF₄ hydrolytic decomposition.

Fig. 4(A) shows the CF₄ conversion depending on reaction time over the bare and Zn modified γ -Al₂O₃ (Zn/Al₂O₃) catalysts. Initially all of the catalysts revealed 100% CF₄ conversion, but they showed quite different dependence upon time on stream. The bare γ -Al₂O₃ deactivated rapidly within 15 h; however, the Zn/Al₂O₃ catalysts showed significant enhancement of stability and no loss in activity was found for the one with 20% Zn loading throughout 70 h of time on stream. As shown in Fig. 4(B), the γ -Al₂O₃ modified with Ni was quite similar to Zn/Al₂O₃ but the effect of Ni was not so high as that of Zn. That is, the addition of Ni to the γ -Al₂O₃ also brought about an improvement in catalytic stability, but the activity of the Ni-modified Al₂O₃ for the CF₄ decomposition was less than that of Zn/Al₂O₃.

The XRD peaks in Fig. 5(A) indicates zinc nitrate loaded on the γ -Al₂O₃ surface decomposed and reacted with γ -Al₂O₃ to form ZnAl₂O₄ in the calcination process. The higher the loading of Zn, the more ZnAl₂O₄ was formed on the prepared catalysts surface, which prevented the formation of the catalytically inactive α -Al₂O₃ phase on the Zn/Al₂O₃ catalysts during the CF₄ decomposition reaction (Fig. 5(B)). As listed in Table 1, when γ -Al₂O₃ was modified with Zn, a decrease in surface area was observed in their fresh state, that is γ -Al₂O₃ > 5% Zn/Al₂O₃ > 20% Zn/Al₂O₃. However, a reverse trend was observed over the spent catalysts; the surface area of the catalysts after the CF₄ decomposition and the used/fresh value increased in the order of bare Al₂O₃ < 5% Zn/Al₂O₃ < 20% Zn/Al₂O₃.

Fig. 4. CF_4 hydrolytic conversion over (A) Zn/Al_2O_3 and (B) Ni/Al_2O_3 catalysts.

Fig. 5. XRD patterns of (A) fresh and (B) used Zn/Al_2O_3 with Zn mole percentage of (1) 0%, (2) 5%, (3) 10%, (4) 12% and (5) 20% (for the used catalysts, the reaction time could be seen from Fig. 4(A)).

The effect of structure modifier Zn could be seen also clearly from SEM images. As shown in Fig. 6, for the unmodified γ -Al₂O₃ the irregularly shaped γ -Al₂O₃ particles were transformed to disk-like and catalytically inactive crystalline α -Al₂O₃ in the CF₄ hydrolytic decomposition through the interaction with the produced HF. The details of transformation mechanism of the γ -Al₂O₃ into α -Al₂O₃ could be seen more clearly from the reference [6]. However, the used 5% Zn/Al₂O₃

Table 1

BET surface area of $\gamma\text{-}Al_2O_3$ modified by Zn and Ni before and after CF_4 hydrolytic decomposition

Catalysts	Surface area $(m^2 g^{-1})$		Used/fresh
	Fresh	Used	
$\overline{\gamma}$ -Al ₂ O ₃	197.9	6.0	0.030
5% Zn/Al ₂ O ₃	182.2	12.0	0.066
10% Zn/Al ₂ O ₃	135.6	38.2	0.282
12% Zn/Al ₂ O ₃	109.9	43.6	0.397
20% Zn/Al ₂ O ₃	87.5	32.2	0.368
5% Ni/Al ₂ O ₃	248.2	47.3	0.191
15% Ni/Al ₂ O ₃	163.2	55.8	0.342
20% Ni/Al ₂ O ₃	113.8	45.9	0.403
30% Ni/Al ₂ O ₃	71.2	37.8	0.531

Fig. 6. SEM images of (A) γ -Al₂O₃ and (B) 5% Zn/Al₂O₃ catalysts after CF₄ decomposition with the time on stream of 22 and 29 h, respectively (magnification: 1000×).

had less regularly shaped morphology than the pure γ -Al₂O₃ after long exposure to the environment of CF₄ decomposition, which was in good agreement with the results of BET and XRD measurements. That is, the spent 5% Zn/Al₂O₃ catalyst showed higher surface area and quite lower XRD intensities of α -Al₂O₃ peaks compared with the un-modified γ -Al₂O₃ catalyst after the reaction.

According to the results of activity and XRD measurements, 20% loading of Zn was enough to form mono-layer coverage of ZnAl₂O₄ on the γ -Al₂O₃ surface and make the catalyst resistant to the transformation of γ -Al₂O₃ into α -Al₂O₃.

In the fresh Ni/Al₂O₃ catalysts as calcined at 700 °C, γ -Al₂O₃ and NiSO₄ were the main phases (Fig. 7(A)). With the increase in nickel loading, the XRD peaks intensity of NiSO₄ became stronger. After CF₄ hydrolysis at 750 °C, instead of the NiSO₄ and γ -Al₂O₃ phases, NiAl₂O₄ together with α -Al₂O₃ peaks depending on the nickel loading appeared. As the nickel content increased the intensity of α -Al₂O₃ peaks decreased and no α -Al₂O₃ phase was observed as the Ni content reached 15% by mole (Fig. 7(B)). As listed in Table 1, the surface area of Ni/Al₂O₃ as-prepared decreased with the increase in Ni loading but a reverse trend was found over the used catalysts similar to that of Zn/Al₂O₃ catalysts.

Fig. 7. XRD patterns of (A) fresh and (B) used Ni/Al₂O₃ with Ni mole percentage of (1) 0%, (2) 5%, (3) 15%, (4) 20% and (5) 30% (for the used catalysts, the reaction time could be seen from Fig. 4(B)).

Combining the results of characterization with catalytic activity of Zn/Al₂O₃ and Ni/Al₂O₃ catalysts, it can be proposed ZnAl₂O₄ and NiAl₂O₄ are efficient structure modifiers that can inhibit the transformation of the catalytically active γ -Al₂O₃ phase into a dense α -Al₂O₃ phase even in the presence of HF at high temperature.

Besides Zn and Ni, the possibility of alkaline earth metals as structure modifier for γ -Al₂O₃ was also evaluated. As shown in Fig. 8, the catalysts of Mg, Sr or Ba modified γ -Al₂O₃ presented lower initial conversion than un-modified γ -Al₂O₃ for the CF₄ decomposition, that is γ -Al₂O₃ > 2% Mg/Al₂O₃ > 2% Sr/Al₂O₃ > 2% Ba/Al₂O₃ > 10% Ba/Al₂O₃. It is indicated that the addition of alkaline earth metals to γ -Al₂O₃ brought a catalytically negative effect in activity. As can be seen in Fig. 9, only the γ -Al₂O₃ phase appeared in the Al₂O₃ modified by 2% alkaline earth metals, and BaAl₂O₄ became a dominant phase in 10% Ba/Al₂O₃ as prepared. After the CF₄ hydrolytic decomposition, the α -Al₂O₃ phase dominated the 2% Mg/Al₂O₃ but with a weaker intensity than the pure Al₂O₃ catalyst, while the γ -Al₂O₃ was a dominant phase in used 2% Sr/Al₂O₃ and 2% Ba/Al₂O₃, and only BaAl₂O₄ phase was seen in 10% Ba/Al₂O₃,

Fig. 8. CF₄ hydrolytic conversion over Al₂O₃ modified by Mg, Sr and Ba.

as in their fresh state. As listed in Table 2, the used/fresh value of surface area shows the order of γ -Al₂O₃ < 2% Mg/Al₂O₃ < 2% Sr/Al₂O₃ < 2% Ba/Al₂O₃ < 10% Ba/Al₂O₃, which is consistent with their XRD results but opposite to the catalytic activity in the CF₄ decomposition.

Fig. 9. XRD patterns of (A) fresh and (B) used catalysts: (1) γ -Al₂O₃, (2) 2% Mg/Al₂O₃, (3) 2% Sr/Al₂O₃, (4) 2% Ba/Al₂O₃ and (5) 10% Ba/Al₂O₃ (for the used catalysts, the reaction time could be seen from Fig. 8).

Table 2 BET surface area of $\gamma\text{-}Al_2O_3$ modified by alkaline earth metals as prepared and used in CF4 hydrolysis

Catalysts	Surface area $(m^2 g^{-1})$		Used/fresh
	Fresh	Used	
2% Mg/Al ₂ O ₃	226.7	19.7	0.087
2% Sr/Al ₂ O ₃	209.2	158.2	0.756
2% Ba/Al ₂ O ₃	219.6	183.2	0.834
10% Ba/Al ₂ O ₃	122.7	104.8	0.854

The modification of γ -Al₂O₃ with alkaline earth metals reveals that they bring about a negative effect in the catalytic activity, but positively affected the structural stability through the formation of metal aluminates. According to the references on CFCs decomposition [18–25], it could be speculated that the catalytic performance of the modified γ -Al₂O₃ catalysts in the CF₄ decomposition has some correlation with their surface acidity. Therefore, the acidities of the catalysts as prepared and after the reaction were investigated by the FTIR spectra of adsorbed pyridine.

3.3. FTIR spectra of pyridine adsorbed on γ -Al₂O₃ based catalysts

Fig. 10 shows the FTIR spectra of pure and modified γ -Al₂O₃ in the fresh state after pyridine adsorption and evacuation at 100 °C. These spectra with adsorbed pyridine were obtained after subtraction with a spectrum taken just before pyridine adsorption. According to the references [26,27], the characteristic wave numbers of 1444, 1498, 1596 and 1611 cm⁻¹ could be assigned to the pyridine species coordinatively adsorbed on Lewis acid sites while the 1545 cm⁻¹ peak to the pyridinium ion formed on Brönsted acid sites. The fresh γ -Al₂O₃ revealed

Fig. 10. FTIR spectra of pyridine adsorbed on fresh (1) γ -Al₂O₃, (2) 15% Ni/Al₂O₃, (3) 2% Mg/Al₂O₃, (4) 2% Sr/Al₂O₃ and (5) 2% Ba/Al₂O₃ after evacuation at 100 °C.

Fig. 11. FTIR spectra of pyridine adsorbed on fresh 15% Ni/Al₂O₃ after evacuation at (1) 100 $^{\circ}$ C, (2) 200 $^{\circ}$ C, (3) 300 $^{\circ}$ C and (4) 400 $^{\circ}$ C.

only Lewis acidity having peaks at 1445, 1590 and 1611 cm^{-1} . In the case of 15% Ni/Al₂O₃, not only the peaks attributable to Lewis acid sites, but also a band at 1543 cm⁻¹ corresponding to Brönsted acid site was detected, which is mainly associated with the nickel species in the form of NiSO₄ and the existence of SO_4^{2-} on catalyst surface [17]. In addition, 15% Ni/Al₂O₃ exhibited a large surface acidity amounts compared with bare γ -Al₂O₃, which is consistent with their activity in the steady state even though 100% conversion of CF4 was obtained over both bare and Ni modified γ -Al₂O₃ at the beginning of reaction. The Mg, Sr and Ba modified Al₂O₃ showed only peaks at 1445, 1577, 1590 and 1611 cm^{-1} corresponding to the Lewis acid sites without Brönsted acid sites. Their intensities were also lower than that of bare γ -Al₂O₃. It is thought that the decreased acidity is the main reason for the decreased CF₄ decomposition activities over the γ -Al₂O₃ modified with alkaline earth metals. That is, the modification of γ -Al₂O₃ with alkaline earth metals such as Mg, Sr and Ba brings about an improvement in catalyst stability by the formation of metal aluminates, but reduces hydrolysis activity by neutralizing Lewis acid sites of γ -Al₂O₃. Consequently, it can be concluded that Ni is an efficient structure modifier to stabilize γ -Al₂O₃ but alkaline earth metals are not suitable ones.

The acidic properties of Ni modified γ -Al₂O₃ catalysts were thoroughly investigated in the following experiments. Fig. 11 shows the FTIR spectra of pyridine adsorbed on the fresh 15% Ni/Al₂O₃ catalyst and evacuated at 100–400 °C. The acid sites were quite strong and pyridine peaks were detected even after evacuation at 400 °C.

The function of Ni modifier could be seen more clearly on the used catalysts. As shown in Fig. 12, most of acid sites over the bare γ -Al₂O₃ disappeared after 22 h of time on stream. However, it was modified with Ni considerable amount of Lewis acid sites still existed even after 47 h of time on stream, but the Brönsted acid sites disappeared, which is in accordance with the nickel

Fig. 12. FTIR spectra of used (1) γ -Al₂O₃ and (2) 15% Ni/Al₂O₃ after pyridine adsorption and evacuation at 100 °C (the reaction time of γ -Al₂O₃ and 15% Ni/Al₂O₃ was 22 and 47 h, respectively).

species in the form of NiAl₂O₄ rather than NiSO₄ in used 15% Ni/Al₂O₃. Similarly, the Lewis acid sites on Zn/Al₂O₃ resistant to HF at high temperature can also be seen from FTIR spectra of pyridine adsorbed on used 10% Zn/Al₂O₃ catalyst, which was reported in our previous paper [6]. These results reveal that the Lewis acidity of γ -Al₂O₃ based catalysts plays an important role in the CF₄ hydrolytic decomposition and the efficient structure modifier can firmly preserve the Lewis acid sites in a corrosive environment of HF at high temperature.

4. Conclusions

 γ -Al₂O₃ obtained by calcining boehmite was an efficient catalyst for CF₄ hydrolytic decomposition. However, the transformation of γ -Al₂O₃ into α -Al₂O₃ effected by the produced HF resulted in a rapid loss of surface acidity and hence its activity. When Zn or Ni as a structure stabilizer was introduced into the γ -Al₂O₃, its catalytic stability could be enhanced by the formation of ZnAl₂O₄ or NiAl₂O₄ resistant to HF. Alkaline earth metals such as Mg, Sr and Ba were also good structural stabilizers for γ -Al₂O₃ but the catalytic activity of resulting catalysts for the CF₄ decomposition was decreased due to the neutralizing effect on the acid sites of γ -Al₂O₃. The hydrolytic decomposition of CF₄ is an acid catalyzed reaction, the Lewis acidity of γ -Al₂O₃ based catalysts plays an important role and the efficient structure

modifier can firmly preserve the Lewis acid sites on catalysts in the CF₄ decomposition process.

Acknowledgements

The financial support from the Korea Ministry of Commerce, Industry and Energy is gratefully acknowledged. X.-F. Xu thanks the National Natural Science Foundation of China (no. 20573089) and the Brain Pool program of the Korean Federation of Science and Technology Societies for their support.

References

- A.R. Ravishankara, S. Solomon, A.A. Turnipseed, R.F. Warren, Science 259 (1993) 194.
- [2] W.T. Tsai, H.P. Chen, W.Y. Hsien, J. Loss Prev. Process Ind. 15 (2002) 65.
- [3] M.M. Farris, A.A. Klinghoffer, J.A. Rossin, D.E. Tevault, Catal. Today 11 (1992) 501.
- [4] Y. Takita, C. Morita, M. Ninomiya, H. Wakamatsu, H. Nishiguchi, T. Ishihara, Chem. Lett. (1999) 417.
- [5] Y. Takita, M. Ninomiya, H. Miyake, H. Wakamatsu, Y. Yoshinaga, T. Ishihara, Phys. Chem. Chem. Phys. 1 (1999) 4501.
- [6] X.F. Xu, J.Y. Jeon, M.H. Choi, H.Y. Kim, W.C. Choi, Y.K. Park, Chem. Lett. (2005) 364.
- [7] J.Y. Jeon, X.F. Xu, M.H. Choi, H.Y. Kim, Y.K. Park, Chem. Commun. (2003) 1244.
- [8] S. Shuichi, I. Shinzo, Y. Takeshi, Y. Hisao, A. Shigeru, T. Shin, I. Kazuyoshi, JP Patent 11-070322 (1999).
- [9] N. Takanori, K. Motohiko, O. Yoshifumi, JP Patent 2002-057144 (2001).
- [10] S. Shuichi, Y. Hisao, M. Tomohiko, T. Shin, S. Yoshiki, K. Takeo, Y. Tsugita, K. Terufumi, JP Patent 2001-149749 (2001).
- [11] I. Kazuyoshi, M. Toshihiro, Y. Hisao, T. Takayuki, T. Toshihide, T. Shin, S. Shuichi, JP Patent 2001-224924 (2001).
- [12] J.A. Rossin, PCT WO 01/21304 A1, 2001.
- [13] J.A. Rossin, W.B. Feaver, US Patent 6,673,326 B1 (2004).
- [14] Y. Mori, US Patent 6,790,421 B2 (2004).
- [15] Y. Mori, T. Kyotani, T. Shinohara, US Patent 6,949,225 B1 (2005).
- [16] Z.M. El-Bahy, R. Ohnishi, M. Ichikawa, Appl. Catal. B 40 (2003) 81.
- [17] Z.M. El-Bahy, R. Ohnishi, M. Ichikawa, Catal. Today 90 (2004) 283.
- [18] M. Tajima, M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S. Kushiyama, S. Kobayashi, K. Mizuno, H. Ohachi, Appl. Catal. B 9 (1996) 167.
- [19] X.Z. Jiang, L.Q. Zhang, X.H. Wu, L. Zheng, Appl. Catal. B 9 (1996) 229.
- [20] M. Tajima, M. Niwa, Y. Fujii, Y. Koinuma, R. Aizawa, S. Kushiyama, S. Kobayashi, K. Mizuno, H. Ohachi, Appl. Catal. B 12 (1997) 263.
- [21] A. Hess, E. Kemnitz, Catal. Lett. 49 (1997) 199.
- [22] W.M. Hua, F. Zhang, Z. Ma, Y. Tang, Z. Gao, Catal. Lett. 65 (2000) 85.
- [23] J. Zhao, B.Z. Tian, Y.H. Yue, W.M. Hua, D.Y. Zhao, Z. Gao, J. Mol. Catal. A 242 (2005) 218.
- [24] Y. Takita, H. Wakamatsu, G.L. Li, Y. Moro-oka, H. Nishiguchi, T. Ishihara, J. Mol. Catal. A 155 (2000) 111.
- [25] Y. Takita, J. Moriyama, H. Nishiguchi, T. Ishihara, F. Hayano, T. Nakajo, Catal. Today 88 (2004) 103.
- [26] J. Navarrete, T. Lopez, R. Gomez, Langmuir 12 (1996) 4385.
- [27] S. Damyanova, M.A. Centeno, L. Petrov, P. Grange, Spectrochim. Acta, Part A 57 (2001) 2495.